САМАРСКАЯ ОБЛАСТНАЯ АСТРОНОМИЧЕСКАЯ ШКОЛА

РЕШЕНИЯ КОНКУРСНЫХ ЗАДАЧ ОЛИМПИАДЫ ПО АСТРОНОМИИ СРЕДИ УЧАЩИХСЯ 8-9 КЛАССОВ ЗАОЧНОГО ТУРА № 1

Решения подготовил:

Филиппов Юрий Петрович, научный руководитель школы, старший преподаватель кафедры общей и теоретической физики Самарского государственного университета, к.ф.-м.н.

Решения задач

Задача № 1.

Условие: Астроном-любитель сделал фотографию ночного неба (см. рис. 1). Определите, какие созвездия видны на фотографии. (1 балл за правильно названное созвездие).

Рис. 1.

Решение:

Рис. 2.

Созвездия, представленные на фотографии, легко идентифицировать при сравнении последней с картами звездного неба или с картиной визуализации звездного неба какой-либо компьютерной программы, например Stellarium. На рис. 2 представлен скриншот указанной программы с указанием созвездий того же участка неба. Очевидно, что на исходной фотографии видны часть созвездий Пегаса, Водолея, а также Дельфин и Малый конь.

<u>Ответ</u>: Пегас, Водолей, Дельфин и Малый конь ($\$_{\max} = 4$ балла).

Задача № 2.

<u>Условие:</u> На рис. 1. представлен трек, оставленный Международной космической станцией (МКС) при пролете над местом наблюдения. На какой угол переместилась станция по небосводу относительно наблюдателя за время наблюдений, если время экспозиции фотокамеры составляет $\Delta t = 60$ сек, а угловая скорость видимого движения МКС равна $\omega = 19.3'/\text{сек}$ (ответ представить в градусах и радианах). Определите также угловой масштаб фотографии μ (град/мм). (3 балла).

Дано:

 $\Delta t = 60 \text{ сек};$ $\omega = 19.3'/\text{сек};$

Haŭmu:

 $\Delta \varphi$ – ? μ – ?

Решение:

Из курса физики (раздел – кинематика вращательного движения материальной точки, 9 класс) известно, что угол, на который сместился объект за время наблюдений, можно определить как

$$\Delta \varphi = \omega \cdot \Delta t = 1158' = 19.3^{\circ} = 3.37 \cdot 10^{-1}$$
 рад. (1)

Угловой масштаб фотографии – параметр, определяемый отношением углового размера какого-либо объекта $(\Delta \varphi)$, представленного на фотографии к его линейному размеру $(\Delta \ell)$, определяемому линейкой (или каким-либо другим измерительным прибором) по фотографии, т.е.

$$\mu = \frac{\Delta \varphi}{\Delta \ell} = \frac{19.3^{\circ}}{76 \,\text{mm}} = 0.254^{\circ}/\text{mm}.$$
 (2)

здесь $\Delta \ell = 76$ мм – линейный размер трека МКС, измеренный на стандартной распечатке страницы заданий с фотографией (ваш результат может несколько отличаться от указанного из-за различных форматов распечатки принтеров).

Ответ: $\Delta \varphi = 19.3^{\circ} = 3.37 \cdot 10^{-1}$ рад, $\mu = 0.254^{\circ}/\text{мм}$ (\$max = 3 балла).

Задача № 3.

<u>Условие:</u> Известно, что все планеты вращаются вокруг Солнца в одном направлении (против часовой стрелки, если смотреть со стороны северного полюса Земли). В некоторый момент планеты Венера и Юпитер оказались на небе рядом и недалеко от Солнца. В какую сторону относительно Солнца они будут перемещаться по небу для земного наблюдателя? Рассмотрите все возможные случаи (3 балла).

Решение:

Как известно, Венера – нижняя планета (ее орбита лежит внутри орбиты Земли), см рис. 3 (орбита I), Юпитер – верхняя планета (его орбита расположена вне орбиты Земли), см рис. 3 (орбита III). Как известно, чем дальше планета движется от Солнца, тем меньше ее скорость (прямое следствие закона сохранения механической энергии), следовательно выполняется неравенство вида:

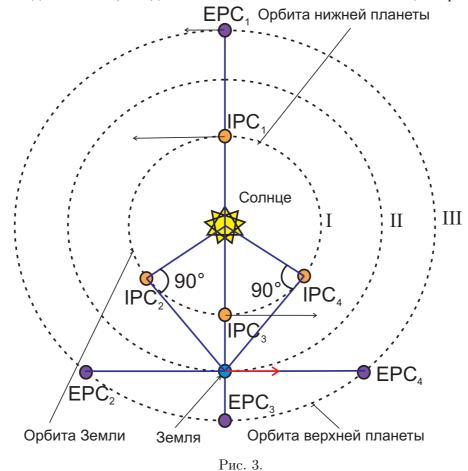
$$V_J < V_{\oplus} < V_V,$$
 (3)

здесь V_J, V_{\oplus}, V_V — скорость Юпитера, Земли, Венеры относительно Солнца (на рис. 3 указаны стрелками).

Согласно рис. 3, Юпитер может находится недалеко от Солнца, если только он находится вблизи своего соединения с Солнцем (конфигурация EPC1). В силу неравенства (3) скорость движения Юпитера относительно земного наблюдателя будет $V_{\oplus} - V_J$ и будет направлена от Солнца вправо. Следовательно, Юпитер в окрестности своего соединения относительно Солнца всегда движется попятно (т.е. с востока на запад).

Венера может находится вблизи Солнца, если находится в окрестности своего верхнего (на рис 3. конфигурация IPC1) или нижнего соединения (на рис 3. конфигурация IPC3). Поскольку $V_{\oplus} < V_V$, то в нижнем соединении вектор скорости Венеры относительно земного наблюдателя

направлен с востока на запад, т.о. планета движется относительно Солнца попятно (также как и Юпитер). В верхнем соединении вектор скорости Венеры относительно земного наблюдателя направлен с запада на восток, т.о. движение планеты относительно Солнца – прямое.



<u>Ответ</u>: Движение Юпитера относительно Солнца попятное (с восток на запад); Движение Венеры в окрестности нижнего соединения попятное (с восток на запад), в окрестности верхнего соединения – прямое (с запада на восток) ($\$_{max} = 3$ балла).

Задача № 4.

Условие: Как известно, Международная космическая станция (МКС) имеет сидерический период обращения вокруг центра Земли равный 93 мин. Сколько раз может пройти МКС над данной местностью за сутки (4 балла).

Дано

 $T_S = 93$ мин = 1.55 часа;

 $T_{\oplus}=23$ часа 56 мин 4 сек pprox 24 часа;

Haŭmu:

N-?

Решение:

Как известно, МКС движется относительно Земли по почти круговой траектории в том же направлении, что и Земля в своем суточном движении, т.е. с запада на восток. Относительно, земного наблюдателя МКС будет проходить над одной и той же точкой поверхности Земли через промежуток времени S — синодический период обращения МКС, определяемый уравнением синодического движения:

$$\frac{1}{S} = \frac{1}{T_S} - \frac{1}{T_{\oplus}}, \Rightarrow S = \frac{T_{\oplus} \cdot T_S}{T_{\oplus} - T_S} = 1.657 \text{ vaca.}$$
 (4)

Количество раз, которое может пройти МКС над данной местностью за сутки можно определить отношением продолжительности суток и периода S:

 $N = \left[\frac{24 \operatorname{vaca}}{S}\right] + 1 = 15 \operatorname{pas.} \tag{5}$

 $Omeem: N = 15 \text{ раз } (\$_{max} = 4 \text{ балла}).$

Задача № 5.

Условие: На краю диска Солнца обнаружен протуберанец, угловой размер которого равен 0.5 угл. мин. Оцените его линейные размеры. (4 балла)

Дано:

 $\Delta \rho_p = 0.5$ угл. мин;

<u>Решение:</u>

Как известно, угловой диаметр Солнца составляет $\Delta \rho_{\odot}=32',$ а его линейный размер – $D_{\odot}=1.4$ млн км. Следовательно, можно определить масштаб изображения как

$$\mu = \frac{D_{\odot}}{\Delta \rho_{\odot}} = 43.8 \cdot 10^3 \,\text{km/'}.$$
 (6)

Haŭmu:

 $\ell-?$

Тогда легко определить линейный размер протуберанца:

$$\ell = \mu \cdot \Delta \rho_p = 21.9 \cdot 10^3 \,\text{km}. \tag{7}$$

Ответ: $\ell = 21.9 \cdot 10^3$ км ($\$_{\text{max}} = 4$ балла).

Задача № 6.

Условие: В одном фантастическом фильме описывается вспышка сверхновой, наблюдавшаяся на Земле. Как утверждается в фильме, через 50 лет после регистрации вспышки до Земли дошла ударная волна, возникшая при вспышке (что привело к разнообразным катаклизмам на Земле). Предположим, что ударная волна распространялась со скоростью 20 тыс. км/с (что близко к реальной средней скорости ударных волн, возникающих при вспышках сверхновых). На каком расстоянии от Земли должна была бы находиться такая сверхновая? Какие объекты в действительности находятся на таких расстояниях? (5 баллов)

Дано:

 $V_w = 2 \cdot 10^4 \ {
m km/c};$ $\Delta t = 50 \ {
m лет} = 1.578 \cdot 10^9 \ {
m cek};$

Haŭmu:

 ℓ – ?

Решение:

Скорость света равна 300 тыс. $\kappa m/c$, что в 15 раз больше скорости ударной волны. Поэтому временем распространения света для оценки можно пренебречь, и расстояние, на которое авторы фильма поместили сверхновую, можно вычислить, умножив скорость распространения волны на указанное время:

$$\mu = V_w \cdot \Delta t = 3.156 \cdot 10^{13} \,\mathrm{km} = 3.33 \,\mathrm{cb.л.}.$$
 (8)

Проще всего заметить, что скорость распространения волны равна 1/15 светового года в год, поэтому расстояние окажется равным 50/15 св.года, т.е. примерно 3.33 св.года. Никаких хорошо известных объектов на этом расстоянии от Земли нет — объекты Солнечной системы находятся существенно ближе, а расстояние до ближайшей к Солнцу звезды примерно в 1.3 раза больше.

 ${\color{red} \underline{Omsem:}}\ \ell = 3.33\ {\rm cs. года}\ (\$_{\rm max} = 5\ {\rm баллов}).$

Задача № 7.

Условие: Используя лишь закон Тициуса-Боде, предположение о круговых орбитах планет и значение скорости света, оцените время, в течение которого свет идет от Венеры и Меркурия до Земли в моменты их наибольшей элонгации для земного наблюдателя (6 баллов).

Дано:

орбиты планет круговые; положение – наибольшая элонгация;

Haŭmu:

 $t_V, t_M - ?$

Решение:

Как известно, закон Тициуса-Боде определяет расстояние планеты от Солнца и представляется в виде

$$r_n = 0.1(4 + 3 \cdot 2^n),\tag{9}$$

где n — планетный индекс, для каждой планеты, принимающий свое значение. Так для Меркурия — $n=\infty$, а для Венеры — n=0, для Земли — n=1. Расстояние для Меркурия, Венеры и Земли равны соответственно $r_M=0.4$ а.е., $r_V=0.7$ а.е., $r_E=1.0$ а.е.

В положении наибольшей элонгации планеты находятся в одной из точек IPC_2 и IPC_4 рис. 3. При этом планета, Земля и Солнце образуют прямоугольный треугольник, следовательно, расстоние от планеты до Земли можно вычислить по теореме Пифагора:

$$r_{E-P} = \sqrt{r_E^2 - r_P^2}, \ r_P = r_M, r_V.$$
 (10)

Так для Меркурия эта величина составляет $r_{E-M}=0.917$ a.e., $r_{E-V}=0.714$ a.e.

В итоге, время, в течение которого свет идет от Венеры и Меркурия до Земли, составляет

$$t_M = \frac{r_{E-M}}{c} = 7.6 \,\text{мин}, \ t_V = \frac{r_{E-V}}{c} = 5.9 \,\text{мин},$$
 (11)

где c = 300000 км/с – скорость света в вакууме.

 $\underline{\textit{Omsem:}}\ t_M = \frac{r_{E-M}}{c} = 7.6\ \text{мин},\ t_V = \frac{r_{E-V}}{c} = 5.9\ \text{мин}\ (\$_{\max} = 6\ \text{баллов}).$

Задача № 8.

<u>Условие:</u> Звезда Глизе 581 (Gliese 581) из созвездия Весов находится на расстоянии 20.4 световых лет от нас. К сегодняшнему дню у этой звезды астрономам удалось открыть настоящую планетную систему из шести планет, одна из которых находится в "пригодной для земной жизни зоне". Сколько лет потребуется космическому кораблю, летящему со скоростью 25 км/с, чтобы достичь Глизе 581?

Дано:

r=20.4 св. л., V=25 км/с,

Haŭmu:

t-?

Решение:

Как известно, 1 световой год – это расстояние которое проходит свет в вакууме (в пустоте) за один тропический год и который равен

1 св. год =
$$9.46 \cdot 10^{12}$$
 км. (12)

Как известно, скорость света в вакууме равна $c=300000~{\rm km/c}$, следовательно, скорость корабля составляет $0.000083~{\rm or}$ скорости света. Тогда время, в течение которого корабль достигнет Глизе $581~{\rm moжho}$ определить из равенства:

$$20.4\,\mathrm{лет} \cdot c = 0.000083 \cdot c\,t \implies t = \frac{20.4\,\mathrm{лет}}{0.000083} = 244800\,\mathrm{лет}.$$
 (13)

Omeem: t = 244800 лет ($\$_{\text{max}} = 6$ баллов).

Задача № 9.

Условие: 2 марта этого года астероид 2009 DD45 пролетел между Землей и Луной. Предположим, что астероид в некоторый момент оказался точно на прямой, соединяющей наблюдателя на Земле и центр Луны, двигался со скоростью 30 км/с под углом 30° к этой прямой и находился на расстоянии 100 тыс.км от наблюдателя. Найдите время, за которое астероид для наблюдателя пересек диск Луны. Радиус Луны в 4 раза меньше радиуса Земли, расстояние от Земли до Луны равно примерно 60 радиусам Земли. (7 баллов).

Дано:

V=30 км/с, $lpha=30^\circ,$ $r_a=100$ тыс. км, $R_{\mathbb{C}}=rac{1}{4}\,R_{\oplus},$ $r_{\mathbb{C}}=60\,R_{\oplus}.$

Haŭmu:

t-?

Решение:

Как известно, радиус Земли примерно равен $R_{\oplus}\approx 6400$ км, поэтому астероид пролетел на расстоянии, равном $r_a=15.6\cdot R_{\oplus}$. Далее немного упростим задачу — будем считать, что астероид пересекал прямую, соединяющую наблюдателя и Луну, перпендикулярно. Тогда путь x, пройденный астероидом на фоне диска Луны, относится к расстоянию

до него так же, как диаметр Луны к расстоянию до нее (следует из подобия треугольников или теоремы Фалеса):

$$\frac{x}{15.6 R_{\oplus}} = \frac{2R_{\mathbb{C}}}{60 R_{\oplus}}, \Rightarrow x = \frac{15.6}{120} R_{\oplus} = 0.13 R_{\oplus} \approx 830 \,\mathrm{km}.$$
 (14)

Теперь вспомним, что астероид двигался под углом $\alpha=30^\circ$ к прямой. Так как расстояние между Землей и Луной намного больше 832 км, то можно считать, что за счет этого путь астероида на фоне диска Луны увеличился в $1/\sin 30^\circ=2$ раза. В итоге получаем путь, равный 1660 км. Так как астероид двигался со скоростью 20 км/с, время пересечения окажется равным 83 с.

Ответ: t = 83 с ($\$_{\text{max}} = 7$ баллов).

Задача № 10.

<u>Условие:</u> Оцените, во сколько раз отличаются скорости низколетящих спутников Земли и Юпитера, если известно, что радиус Юпитера примерно в 10 раз меньше радиуса Солнца. (8 баллов).

Дано:

 $R_J = \frac{1}{10} R_{\oplus}.$

$Haruve{u}mu$:

 $\eta - ?$

<u>Решение:</u>

Обозначим массу планеты как \mathfrak{M} , а радиус – \mathfrak{R} . Так как спутники низколетящие, то это означает, что орбиты у спутников круговые и радиус орбиты приближенно равен радиусу соответствующей планеты $(r_s \approx \mathfrak{R})$. Согласно второму закону Ньютона для спутника, движущегося по круговой орбите под действием силы всемирного тяготения, имеем

$$m_s \frac{V_s^2}{r_s} = \frac{G m_s \mathfrak{M}}{r_s^2}, \Rightarrow V_s = \sqrt{\frac{G \mathfrak{M}}{\mathfrak{R}}}.$$
 (15)

здесь m_s, V_s, r_s — масса, скорость, радиус орбиты спутника; $G=6.67\cdot 10^{-11}~{
m H\cdot m}^2/{
m kr}^2$ — гравитационная постоянная.

Учтем, также что массу планеты можно представить в виде:

$$\mathfrak{M} = \rho \cdot V = \rho \frac{4}{3} \pi \,\mathfrak{R}^3, \quad \Rightarrow \quad V_s = \sqrt{\frac{4\pi}{3} G \rho \,\mathfrak{R}^2}. \tag{16}$$

Учитывая, что массовая плотность Земли Юпитера и Земли равны (согласно справочным данным) $\rho_{\oplus}=5.5~{\rm r/cm^3},~\rho_J=1.3~{\rm r/cm^3},~R_{\odot}=109\cdot R_{\oplus}$ тогда

$$\eta = \frac{V_J}{V_{\oplus}} = \sqrt{\frac{\rho_J}{\rho_{\oplus}} \frac{\Re_J^2}{\Re_{\oplus}^2}} = \sqrt{10.9^2 \frac{1.3}{5.5}} \approx 5. \tag{17}$$

 $\underline{\textit{Omsem:}}\ \eta = \frac{V_J}{V_\oplus} pprox 5 \ (\$_{\max} = 8 \ \text{баллов}).$

Задача № 11.

<u>Условие:</u> В некотором году 1 января пришлось на воскресенье. Найдите минимально возможное и максимально возможное количество лет, которое может пройти до следующего 1 января, которое также придется на воскресенье. (9 баллов).

Дано:

1 января \leftrightarrow воскресенье.

Haŭmu:

 $N_{\min}, N_{\max} - ?$

<u>Решение:</u>

Как известно, в нашем (григорианском) календаре существует *обычные* (продолжительность — 365 дней) и *високосные* (продолжительность — 366 дней) годы. Поделим 365 и 366 на 7 (количество суток в недели). Получим остатки, равные, соответственно, 1 и 2.

Это означает, что если воскресенье 1 января был в високосном году, то следующее 1 января будет вторником, а если в невисокосном – вторником.

Тогда каждые четыре года 1 января будет смещаться на 5 дней недели вперед и очевидно, что сдвиг на 7 дней недели может произойти не менее чем за 5 лет (в течение которых должно быть два високосных года). Первый ответ получен, возможный минимум $N_{\min}=5$ лет.

Второй ответ получить сложнее. Ясно, что продолжительность цикла без понедельников увеличится в том случае, если в цикле будет високосный год, начинающийся в субботу (назовем его "опорным") - тогда следующий начнется в понедельник. Отсчитывая дни недели 1 января от этого опорного года вперед и назад, получим такую последовательность дней 1 января: воскресенье, понедельник (високосный), вторник, четверг, пятница, суббота (високосный, опорный), понедельник, вторник, среда, четверг(високосный), суббота, воскресенье. Получается последовательность длиной в 11 лет. Сделать так, чтобы в ней два високосных года начинались на воскресенье, уже не удастся - числа 4 (цикл високосных годов) и 7 (цикл дней недели) взаимно просты, поэтому такие года отстоят друг от друга на 28 лет.

Тем не менее улучшить этот результат все же можно. Дело в том, что некоторые года, номера которых делятся на 4, в григорианском календаре не являются високосными. Это года, номера которых делятся на 100 и не делятся на 400 (за всю историю григорианского календаря таких было три - 1700, 1800,1900). Если номер нашего опорного года заканчивался на ...96 и следующий за ним високосный год появлялся только через 8 лет (годятся такие варианты: 1696, 1796, 1896), то конец предыдущей последовательности "четверг (високосный), суббота, воскресенье "превратится в такой: "четверг (невисокосный, номер заканчивается на два нуля), пятница, суббота, воскресенье". Последовательность удлиняется на один год и ее длина достигает 12 лет. Аналогичной будет и ситуация, когда опорный год заканчивается на ...04 – в этом случае последовательность также удлиняется на один год, только спереди. Но так как удлинить ее с двух сторон сразу невозможно, то максимально возможная продолжительность остается равной $N_{\rm max}=12$ годам.

Ответ: $N_{\min} = 5$ лет, $N_{\max} = 12$ лет ($\$_{\max} = 9$ баллов).

Задача № 12.

Условие: В 2010 году противостояние Юпитера пришлось на 21 сентября. В каком созвездии был виден Юпитер? В какой момент года будет наблюдаться противостояние Юпитера в 2013 году? В каком созвездии он будет виден? (10 баллов).

Дано:

21.09.2010 г. – противостояние Юпитера.

Haŭmu:

В каком созвездии был виден Юпитер? в 2013?

Решение:

21 сентября 2010 года — это канун осеннего равноденствия (оно произошло 23 сентября в 03^h 09^m по всемирному времени). В это время Солнце должно находится в непосредственной близости от небесного экватора и точки осеннего равноденствия. Следовательно, Юпитер должен находиться в непосредственной близости от точки весеннего равноденствия. которая на то момент находилась в созвездии Рыбы. Следовательно, Юпитер должен находится в том же созвездии и это, действительно, так и было! Для определения даты противостояния

Юпитера в 2013 году необходимо знать его синодический период обращения для земного наблюдателя. Для этого воспользуемся уравнением синодического движения:

$$\frac{1}{S} = \frac{1}{T_{\oplus}} - \frac{1}{T_J}, \Rightarrow S = \frac{T_{\oplus} \cdot T_J}{T_J - T_{\oplus}} = 1.092 \,\text{года} \approx 399 \,\text{суток}.$$
 (18)

где $T_{\oplus}=1$ год =365.25 суток, $T_J=11.8618$ года — сидерический период обращения Юпитера вокруг Солнца. Т.о. каждое последующее противостояние Юпитера должно происходить на 34(33) суток позже соответствующей даты предыдущего. Тогда получаем следующие даты противостояния Юпитера, представленные в таблице.

$N_{\overline{0}}$	Дата по расчетам	Точная дата
1	21 сентября 2010	21 сентября 2010
2	25 октября 2011	29 октября 2011
3	27 ноября 2012	3 декабря 2012
4	31 декабря 2013	6 января 2014
5	3 февраля 2015	7 февраля 2015

Из таблицы следует, что искомая расчетам 31.12.2013, согласно однако профессионалов укаточные расчеты ОТР противостояния зывают на то, 2013 году не произойдет (см. например, http://reference.wolfram.com/legacy/applications/ astronomer/Tables/JupiterOpposition.html). Из сопоставления расчетных данных и точных прогнозов профессионалов следует, что разница в датах 3-4 суток.

Это обусловлено эллиптичностью орбит Земли и Юпитера (что не принято во внимание при построении синодического уравнения) и как следствие, изменением угловой скорости движения планеты вокруг Солнца, которая является ключевой характеристикой в определении искомой даты. В начале января – Солнце находится в Стрельце, следовательно, Юпитер должен находиться в диаметрально противоположном на небесной сфере зодиакальном созвездии – Близнецы.

<u>Ответ</u>: В 2013 году противостония Юпитера не будет. Ближайшее противостояние произойдет 6.01.2014 года. Юпитер будет находиться в Близнецах. ($\$_{max} = 10$ баллов).

Задача № 13.

Условие: Почему самые продолжительные солнечные затмения наблюдаются в тропических странах? (11 баллов).

Решение:

Во время солнечного затмения лунная тень движется по поверхности Земли приблизительно с запада на восток со скоростью около 1 км/с (это скорость движения Луны по орбите). В ту же сторону, но с меньшей скоростью, происходит суточное движение земной поверхности: на экваторе его скорость достигает $2\pi R_{\oplus}/24^h = 0.5$ км/с, а на полюсах уменьшается до нуля. Поэтому в районе экватора скорость тени относительно поверхности составляет только 0.5 км/с. Приняв диаметр лунной тени в 200 км, легко вычислить, что в высоких широтах затмение может продолжаться около 3.5 минут, тогда как на вблизи экватора – до семи минут.

<u>Ответ</u>: На экваторе, в силу вращения Земли, относительная скорость движения тени от Луны наименьшая, поэтому время затмения будет наибольшим. ($\$_{max} = 11$ баллов).

Задача № 14.

<u>Условие:</u> От звезды 0^m на один сантиметр земной поверхности падает около 1 млн. фотонов в секунду. Сколько фотонов попадет на фотопластинку от звезды 20^m за 1 час, если диаметр объектива телескопа 1 м? (11 баллов).

Дано:

 $\begin{array}{lll} m_1 &=& 0^m, \; \Delta t_1 \; = \; 1 \\ {\rm c}, \; \; \Delta S &=& 1 \;\; {\rm cm}^2, \\ \Delta N_1 &=& 10^6; \\ m_2 &=& 20^m, \; \Delta t_2 = 1 \; {\rm yac}, \\ D_2 &=& 1 \; {\rm m}. \end{array}$

Haŭmu:

 $\Delta N_2 - ?$

Решение:

Согласно условию Погсона: разность звездных величин двух светил, равная $m_2 - m_1 = 5^m$ отвечает отношению освещенностей $E_1/E_2 = 10^2$. Следовательно, разность в 20^m отвечает отношению освещенностей, равному 10^8 . Освещенность, создаваемую звездой с 0^m , можно представить как

$$E_1 = \frac{\Delta N_1 \cdot \varepsilon}{\Delta S_1 \cdot \Delta t_1}. (19)$$

здесь ε – энергия одного фотона.

Аналогично можно записать для звезды с 20^m :

$$E_2 = \frac{\Delta N_2 \cdot \varepsilon}{\Delta S_2 \cdot \Delta t_2} \tag{20}$$

Поделим (19) на (20):

$$\frac{E_1}{E_2} = \left(\frac{\Delta N_1}{\Delta N_2}\right) \left(\frac{\Delta S_2}{\Delta S_1}\right) \left(\frac{\Delta t_1}{\Delta t_1}\right), \Rightarrow
\Delta N_2 = \Delta N_1 \left(\frac{E_2}{E_1}\right) \left(\frac{\Delta S_2}{\Delta S_1}\right) \left(\frac{\Delta t_2}{\Delta t_1}\right) = 10^6 \cdot 10^{-8} \cdot \left(\frac{\pi \cdot 10^4}{4}\right) \cdot 3600 = 2.83 \cdot 10^5 \text{ фотонов.}$$
(21)

<u>Ответ:</u> $\Delta N_2 = 2.83 \cdot 10^5$ фотонов. (\$max = 11 баллов).

Задача № 15.

Условие: 12 января 2012 года состоялось прохождение своего перигелия кометой Леви 2006 Т1. Как показали наблюдения 2006 года, комета движется по эллиптической орбите с коротким периодом T=5.28 года и эксцентриситетом $\varepsilon=0.668$. Между орбитами каких планет Солнечной системы расположена орбита этой кометы? Может ли она сближаться с Землей? Если да, то до какого расстояния? (12 баллов).

<u>Дано:</u>	(12	
T=5.28 года, $arepsilon=0.668.$		
 Haŭmu:		

<u>Решение:</u>

Для того чтобы ответить на вопрос "между орбитами каких планет Солнечной системы расположена орбита этой кометы?" необходимо определить расстояние от Солнца до перигелия q и афелия Q кометы:

$$q = a(1 - \varepsilon), \quad Q = a(1 + \varepsilon).$$
 (22)

здесь a — большая полуось эллипса орбиты кометы. Для определения последней необходимо воспользоваться третьим законом Кеплера:

$$\frac{T^2}{T_{\oplus}^2} = \frac{a^3}{a_{\oplus}^3}, \Rightarrow a = a_{\oplus} \sqrt[3]{\frac{T^2}{T_{\oplus}^2}} = 3.0322 \,\text{a.e.}$$
(23)

здесь $T_{\oplus}=1$ год — сидерический период обращения Земли вокруг Солнца, $a_{\oplus}=1$ а.е. — большая полуось земной орбиты.

$$q = 3.0322 \cdot (1 - 0.668) = 1.00669 \text{ a.e.}, \ Q = 3.0322 \cdot (1 + 0.668) = 5.0577 \text{ a.e.}.$$
 (24)

Очевидно, что расстояние до перигелия чуть больше большой полуоси земной орбиты a_{\oplus} (перигелий кометы, в принципе, может лежать как внутри орбиты Земли так и вне ее, поскольку эксцентриситет земной орбиты $\varepsilon_{\oplus}=0.017$, то $q_{\oplus}=a_{\oplus}(1-\varepsilon_{\oplus})=0.983$ а.е., $Q_{\oplus}=a_{\oplus}(1+\varepsilon_{\oplus})=1.017$ а.е.), но меньше большой полуоси Юпитера ($a_J=5.2$ а.е., согласно (9)). Т.о. орбита кометы лежит между орбитами Земли и Юпитера. Комета, в принципе, может сближаться с Землей, если большая ось эллипса ее орбиты лежит или составляет малый угол с плоскостью орбиты Земли. В этом случае среднее минимальное расстояние между Землей и кометой $\Delta r=q-a_{\oplus}=10^6$ км.

<u>Ответ</u>: Орбита кометы лежит между орбитами Земли и Юпитера. Комета, в принципе, может сближаться с Землей, если большая ось эллипса ее орбиты лежит или составляет малый угол с плоскостью орбиты Земли. При этом среднее минимальное расстояние между Землей и кометой $\Delta r = q - a_{\oplus} = 10^6$ км. ($\$_{\text{max}} = 12$ баллов).

Задача № 16.

<u>Условие:</u> Космический корабль опустился на астероид диаметром 1 км и средней плотностью 2.5 г/см^3 . Космонавты решили объехать астероид по экватору на вездеходе за 2 часа. Смогут ли они это сделать? (13 баллов).

Дано:

$$\begin{split} \Delta t &= 2 \text{ часа,} \\ D &= 1 \text{ км.} \\ \rho &= 2.5 \text{ г/см}^3. \end{split}$$

Haŭmu:

Смогут объехать астероид по экватору на вездеходе?

Решение:

Нет, не смогут. Вездеход должен двигаться со скоростью не больше первой космической, иначе он оторвется от поверхности и потеряет опору. Найдем время облета астероида по низкой орбите с этой предельной скоростью:

$$T = \frac{2\pi R}{V_I}$$
, где $V_I = \sqrt{\frac{G\mathfrak{M}}{R}}$. (25)

 V_I – первая космическая скорость для данного астероида.

Учтем также что массу астероида можно представить в виде:

$$\mathfrak{M} = \frac{4}{3} \rho \pi R^3. \tag{26}$$

тогда период обращения представляется в виде:

$$T = \sqrt{\frac{3\pi}{G\rho}} = \sqrt{\frac{3\pi}{6.673 \cdot 10^{-11} \cdot 2.5 \cdot 10^3}} = 7516c = 2.09 \text{ yaca} > 2 \text{ yaca}.$$
 (27)

значит вездеход не сможет объехать астероид за указанное время.

Ответ: вездеход не сможет объехать астероид за указанное время. ($\$_{max} = 13$ баллов).

Задача № 17.

Условие: Три звезды одинаковой массы образуют равносторонний треугольник со стороной L и двигаются по одной окружности с периодом Т. Найти массы звезд.

Дано:

 $egin{array}{c} L, \ T. \ \mathfrak{M}_1 = \mathfrak{M}_2 = \mathfrak{M}_3 = \ \mathfrak{M} \end{array}$

Решение:

Рассмотрим круговое движение звезды 1 (см. рис. 4). Поскольку последняя движется по окружности с постоянной скоростью, то результирующая сила, действующая на данное тело – центростремительная сила. Она определяется векторной суммой двух одинаковых по модулю сил притяжения – \vec{F}_{21} , \vec{F}_{31} , действующих со стороны двух других звезд на данную.

Haŭmu:

 $\mathfrak{M}-?$

Согласно правилу сложения векторов, с использованием свойств треугольника имеем:

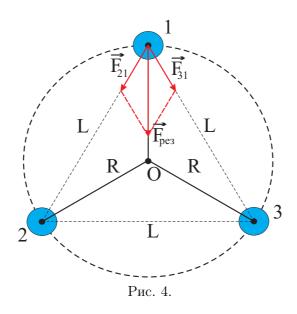
$$F_{\text{pes}} = 2 F_{21} \cos 30^{\circ} = 2 \frac{G \,\mathfrak{M}^2}{L^2} \frac{\sqrt{3}}{2} = \sqrt{3} \frac{G \,\mathfrak{M}^2}{L^2}.$$
 (28)

С другой стороны центростремительную силу можно представить в виде:

$$F_{\text{t.c.}} = \mathfrak{M} \cdot a_{\text{t.c.}} = \mathfrak{M} \cdot \frac{V^2}{R}.$$
 (29)

учитывая, что движение по окружности является равномерным и связь радиуса окружности с стороной треугольника

$$V = \frac{2\pi R}{T}, \quad R = \frac{L}{\sqrt{3}},\tag{30}$$



в результате получаем уравнение вида (второй закон Ньютона для звезды 1):

$$\mathfrak{M}\frac{4\pi^2 L}{\sqrt{3}T^2} = \sqrt{3}\frac{G\,\mathfrak{M}^2}{L^2}, \Rightarrow \mathfrak{M} = \frac{4}{3}\pi^2 \frac{L^3}{G\,T^2}.$$
 (31)

<u>Ответ:</u> $\mathfrak{M} = \frac{4}{3}\pi^2 \frac{L^3}{GT^2}$. ($\$_{\text{max}} = 14$ баллов).

Задача № 18.

Условие: С какой планеты Солнечной системы можно увидеть невооруженным глазом спутники двух соседних планет? (15 баллов).

Решение:

Попробуем сформулировать критерии отбора такой планеты.

- Во-первых, у нее должно быть две соседних планеты. Следовательно, Меркурий и Нептун исключаются.
- Во-вторых, у этих двух соседних планет должны быть спутники. Следовательно, отпадают Венера (у Меркурия спутников нет) и Земля (у Венеры тоже нет).

Далее. Спутник будет тем заметнее, чем он больше по размеру. В качестве кандидатов уместно рассмотреть 6-7 самых крупных спутников Солнечной системы (это Луна, галилеевы спутники Юпитера, спутник Сатурна Титан и Нептуна – Тритон). Спутники Марса с Юпитера не увидеть (поскольку их и с Земли, которая ближе, не заметить), у Урана таких крупных спутников нет, так что Юпитер и Сатурн можно также исключить. В итоге остается только два варианта Ч Марс и Уран. Чем ближе планета к Солнцу, тем, при прочих равных условиях, будут ярче ее спутники. Кроме этого, радиусы орбит планет с увеличением порядкового номера планеты очень быстро растут, поэтому и минимальные расстояния между соседними планетами тоже увеличиваются с удалением от Солнца. Оба этих обстоятельства (а также тот факт, что Тритон – самый маленький из крупных спутников, и увидеть его с Урана было бы сложно и по этой причине тоже) приводят к однозначному выводу – искомой планетой является Марс, с которого невооруженным глазом видна Луна и галилеевы спутники Юпитера. Это действительно так – известен факт, что галилеевы спутники Юпитера можно было бы видеть невооруженным глазом даже с Земли (они имеют примерно +5^m звездную величину), если бы не находящийся рядом яркий Юпитер.

<u>Ответ</u>: С Марса можно увидеть невооруженным глазом спутники двух соседних планет ($\$_{\max} = 15$ баллов).